Machine Learning via Multiresolution Approximation

نویسنده

  • Ilya BLAYVAS
چکیده

We consider the classification problem as a problem of approximation of a given training set. This approximation is constructed in a multiresolution framework, and organized in a tree-structure. It allows efficient training and query, both in constant time per training point. The proposed method is efficient for low-dimensional classification and regression estimation problems with large data sets. key words: multiresolution approximation, machine learning, classification, regression estimation

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Multiresolution Matrix Factorization

Large matrices appearing in machine learning problems often have complex hierarchical structures that go beyond what can be found by traditional linear algebra tools, such as eigendecomposition. Inspired by ideas from multiresolution analysis, this paper introduces a new notion of matrix factorization that can capture structure in matrices at multiple different scales. The resulting Multiresolu...

متن کامل

Minimizing a General Penalty Function on a Single Machine via Developing Approximation Algorithms and FPTASs

This paper addresses the Tardy/Lost penalty minimization on a single machine. According to this penalty criterion, if the tardiness of a job exceeds a predefined value, the job will be lost and penalized by a fixed value. Besides its application in real world problems, Tardy/Lost measure is a general form for popular objective functions like weighted tardiness, late work and tardiness with reje...

متن کامل

Learning Texture Discrimination Rules in a Multiresolution System

We describe a texture analysis system in which informative discrimination rules are learned from a multiresolution representation of the textured input. The system incorporates un-supervised and supervised learning via statistical machine learning and rule-based neural networks, respectively. The textured input is represented in the frequency-orientation space via a log-Gabor pyramidal decompos...

متن کامل

Damage identification of structures using second-order approximation of Neumann series expansion

In this paper, a novel approach proposed for structural damage detection from limited number of sensors using extreme learning machine (ELM). As the number of sensors used to measure modal data is normally limited and usually are less than the number of DOFs in the finite element model, the model reduction approach should be used to match with incomplete measured mode shapes. The second-order a...

متن کامل

Least-Squares Structuring, Clustering and Data Processing Issues

Approximation structuring clustering is an extension of what is usually called \square-error clustering" onto various cluster structures and data formats. It appears to be not only a mathematical device to support, specify and extend many clustering techniques, but also a framework for mathematical analysis of interrelations among the techniques and their relations to other concepts and problem...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2003